Copper Catalyzed C-H Functionalization for Direct Mannich Reactions

Magnus Rueping* and Nikita Tolstoluzhsky

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

Magnus.Rueping@rwth-aachen.de

Received December 27, 2010

ABSTRACT

A protocol for a practical and direct addition of α - and γ -alkyl azaarenes to N-sulfonyl aldimines has been developed. Copper salts act as efficient Lewis acid catalysts for direct Mannich-type reactions providing a mild and fast access to various functionalized heterocycles.

The concept of atom economy has driven chemists to develop more efficient and sustainable methodologies for new bond forming reactions. In this context, the C-H activation strategy plays a key role. Although the activation of an aromatic C-H bond is well documented,¹ the activation of a methyl group directly attached to an aromatic ring remains much less explored. Significant contributions to this field have been made by Fagnou and Charette who studied the palladium catalyzed C-H activation of alkyl-substituted azine N-oxides and N-iminopyridinium ylides.^{2,3} With regard to the use of substrates that lack a suitably located activating group, Huang and co-workers recently reported the palladium catalyzed

benzylic addition of 2-methyl azaarenes to N-sulfonylimines.^{4,5} In their report, the authors proposed a mechanism involving the activation of the 2-methyl group via a palladium(II) species (Figure 1).

ORGANIC **LETTERS**

2011 Vol. 13, No. 5 1095–1097

In line with our interest in the development of organocatalytic direct Mannich reactions⁶ and with the knowledge that the equilibrium between 2-methylpyridine A and its enamine counterpart B bearing an exocyclic double $bond⁷$ can be easily shifted, we recently investigated the Brønsted acid catalyzed reaction between 2-methyl azaarenes and N-sulfonylimines. Although Brønsted acid catalysis could be achieved the reactions turned out to be sluggish. Therefore, we decided to investigate a different strategy based on the activation of both nucleophilic and electrophilic reagents by use of a Lewis acid. This approach would allow (1) For recent reviews of heteroarenes direct arylation, see: (a)

Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (d) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35. (e) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.

^{(2) (}a) Campeau, L.-C.; Schipper, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266. (b) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahedron 2009, 65, 3155.

⁽³⁾ Mousseau, J. J.; Larivée, A.; Charette, A. B. Org. Lett. 2008, 10, 1641.

⁽⁴⁾ Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2010, 132, 3650.

⁽⁵⁾ For palladium catalyzed acetoxylation of unactivated benzylic C-H bonds: Jiang, H.; Chen, H.; Wang, A.; Liu, X. Chem. Commun. 2010, 46, 7259.

^{(6) (}a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, DOI: 10.1039/C0CC04539J. (b) Rueping, M.; Lin, M.-Y. Chem.-Eur. J. 2010, 16, 4169. (c) Rueping, M.; Nachtsheim, B. N. Synlett 2010, 119. (d) Rueping, M.; Antonchick, A. P.; Sugiono, E.; Grenader, K. Angew. Chem., Int. Ed. 2009, 48, 908. (e) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2008, 47, 10090. (f) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2008, 47, 5836. (g) Rueping, M.; Antonchick, A. Org. Lett. 2008, 10, 1731. (h) Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2007, 1441. (i) Rueping, M.; Sugiono, E.; Theissmann, T.; Kuenkel, A.; Köckritz, A.; Pews Davtyan, A.; Nemati, N.; Beller, M. Org. Lett. 2007, 9, 1065. (j) Rueping, M.; Azap, C. Angew. Chem., Int. Ed. 2006, 45, 7832.

⁽⁷⁾ When lutidine is refluxed in D_2O , full incorporation of deuterium on the methyl substitutent is observed.

Figure 1. Palladium and Lewis acid catalyzed C-H functionalization.

the application of cheap and readily available metals under mild reaction conditions (Figure 1, bottom).⁸ Furthermore, a suitable Lewis acid could shift the equilibrium to the enamine through the formation of a metal enamide species. Herein, we report an efficient and straightforward addition of alkylazaarenes to N -sulfonylimines.⁹

In order to validate this concept, 2,6-lutidine 1a was initially chosen as an alkyl-azaarene model substrate and N-benzylidene-tosylamide 2a as the imine. Regarding the influence of the solvent and temperature, a preliminary study revealed that THF, high temperature (120 \degree C), and a closed reaction vessel constituted the best conditions for this transformation.

Furthermore, we observed that neither external base nor oxygen is needed for the reaction. Subsequently, an evaluation of various Lewis acids was performed (Table 1). Ytterbium(III) triflate,¹⁰ cobalt(II) acetate, and bismuth(III) triflate¹¹ gave the amine product $3a$ in varying yields (Table 1, entries $1-3$). Nevertheless, these results proved that the aforementioned direct amination reaction can be performed applying Lewis acid catalysis. Copper(I) salts exhibited only

(8) For Lewis acid activation of pyridines: (a) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448. For Lewis acid activation of pyridines and quinolines:(b) Deng, G.; Li, C.-J. Org. Lett. 2009, 11, 1171.

(9) During the preparation of this manuscript a protocol involving rare earth metal salts has been described: Qian, B.; Guo, S.; Xia, C.; Huang, H. Adv. Synth. Catal. 2010, 352, 3195.

(10) (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W. Chem. Rev. 2002, 102, 2227. (b) Tolstoluzhsky, N.; Gorobets, N.; Kolos, N.; Desenko, S. J. Comb. Chem. 2008, 10, 893.

(11) (a) Suzuki, H.; Ikegami, T.; Matano, Y. Synthesis 1997, 249. (b) Rueping, M.; Nachtsheim, B. J.; Scheidt, T. Org. Lett. 2006, 8, 3717. (c) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W. Adv. Synth. Catal. 2006, 348, 1033. (d) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Org. Lett. 2007, 9, 825. (e) Rueping, M.; Nachtsheim, B. J.; Kuenkel, A. Synlett 2007, 1391. (f) Rueping, M.; Nachtsheim, B. J.; Sugiono, E. Synlett 2010, 1549.

Table 1. Evaluation of Different Lewis Acids^a

 a Reaction conditions: 1a (0.76 mmol), 2a (0.304 mmol), catalyst (5 mol %), ligand (5 mol %), THF (0.2 mL), 120 °C, 12 h. b Yield based on ¹H NMR measurement (internal standard 4-MeO-acetophenone). Yield after column chromatography.

Table 2. Substrate Scope of N -Sulfonyl Aldimines^{a}

H_3C	N ^{-R} CH ₃ A н 1a 2a-k	$Cu(OTf)_{2}$ (5 mol %) 1.10-phenanthroline THF, 120 °C, 12 h	H_3C	Ar 3a-k
entry	Ar	R	product	yield $(\%)^b$
1	C_6H_5	Ts	3a	80
$\overline{2}$	C_6H_5	Bs	3 _b	80
3	$4-MeOC6H4$	Bs	3 _c	60
$\overline{4}$	$4-MeOC6H4$	$N_{\rm s}$	3d	61
5	$4-MeOC6H4$	Bos	3e	75
6	$4-CF_3C_6H_4$	Ts	3f	80
7	C_6F_5	Ts	3g	79
8	$4-NO_2C_6H_4$	Ts	3 _h	95
9	$2-BrC6H4$	Ts	3i	88
10	3-Pyridyl	Ts	3j	89
11	$4-BrC_6H_4$	Ts	$3{\bf k}$	88

^a Reaction conditions: 1a (0.76 mmol), 2 (0.304 mmol), Cu(OTf)₂ (5 mol %), 1,10-phenanthroline (5 mol %), THF (0.2 mL), 120 °C, 12 h. b Yield after column chromatography.

poor efficiency in this transformation (Table 1, entries $4-8$). In contrast, very good results were obtained with the more Lewis acidic copper(II) salts (Table 1, entries $9-14$). Among all the tested $Cu(II)$ salts, copper(II) triflate was found to give the best results, affording the desired sulfonamide 3a in 70% yield (Table 1, entry 14).¹² Furthermore, in combination with 1,10-phenanthroline, copper(II) triflate showed the highest

^{(12) (}a) Li, Y.; Yu, Z.; Wu, S. J. Org. Chem. 2008, 73, 5647. (b) Remy, P.; Langer, M.; Bolm, C. Org. Lett. 2006, 8, 1209.

reactivity, providing the product in 80% yield after purification (Table 1, entry 13).

With the optimized conditions in hand, the scope of the reaction with regard to the structure of various N-sulfonyl aldimines was investigated (Table 2). Reaction of 2,6 lutidine 1a with N-tosyl and N-benzenesulfonyl protected aldimines 2a-k, bearing electron-neutral and electronwithdrawing aryl substituents, proceeded smoothly and provided the desired amino compounds in good to excellent yields $(79-95\%$ Table 2, entries $1-2$, $6-11$). In the case of imines containing electron-donating substituents the reactivity of the imine decreased slightly, resulting in yields ranging from 60% to 75% (Table 2, entries $3-5$).

Subsequently the scope of α -alkylazaarenes was examined, and the results are summarized in Table 3. Pyridine

> \triangleright $U \sim 4$

Table 3. Substrate Scope of α -Alkyl Azaarenes^a CO _{Dh}

	יי יציט N	$CU(O H)_2$ (5 moi %)		ו וסג	
Het_{\sim} .R	Ph' н		1,10-phenanthroline THF, 120 °C	Ph'	SO ₂ Ph н
$4 - 14$	2 _b				4a-14a
entry	Het	R	product	time (h)	yield ^b $(\%)$
\mathbf{l}	System	H	4a	24	50
$\overline{2}$	CH ₃ 755	H	5a	12	79
3	CO ₂ Et S	$\mathbf H$	6a	24	62
4		Me	7a	24	58
5	Et	$\rm H$	8a	36	54
6	H_3C	$\boldsymbol{\mathrm{H}}$	9a	60	49 ^c
7	$\mathcal{E}_{\mathcal{E}_{\mathcal{E}}}$	H	10a	$\overline{4}$	58
8	2022	$\rm H$	11a	14	50
9		$\rm H$	12a	12	76
10	Br-	$\rm H$	13a	12	63
11		H	14a	12	55^d

^{*a*} Reaction conditions: **4-14** (2.5 equiv), **2b** (1 equiv), Cu(OTf)₂ (5 mol %), 1,10-phenanthroline (5 mol %), THF (0.2-0.4 mL), 120 °C. (5 mol %), 1,10-phenanthroline (5 mol %), THF (0.2–0.4 mL), 120 °C.
^b Isolated yields after column chromatography. ^c Reaction performed at 130 °C. d Reaction conditions: 14 (1.05 equiv), 2b (1 equiv), iPr_2EtN (1.5 equiv).

derivatives (Table 3, entries $1-5$) exhibited varying reactivity and provided the products $4a-14a$ in moderate to good yields $(50-79\%)$.

A shorter reaction time was required for the pyrimidine 11 (14 h, Table 3, entry 8) and pyridazine 10 (4 h, Table 3, entry 7). Notably, the 6-bromoquinaldine 13 showed good reactivity and the halogen substituent remained untouched during the process, allowing further transformations (Table 3, entry 10). Surprisingly, due to decomposition of the starting materials, the general procedure was not applicable to simple quinaldine 14 (Table 3, entry 11). In this case, the excess of azaarene was decreased to 1.05 equiv and an additional base iPr_2E tN (1.5 equiv) was employed to allow the formation of the targeted compound 14a in 55% yield.

The reactivity of γ -methylazaarenes and the competition between the two reactive centers of α , *γ*-dimethylazaarenes were also investigated (Figure 2).

Figure 2. Regioselectivity in the copper catalyzed C-H functionalizatin. 1,3- vs 1,5- C-H functionalization.

The reaction of the 2,4-lutidine 15 with the imine 2b yielded the α- and γ-addition products 15a and 15b in 23 and 45% yield, respectively. Interestingly, 4-picoline was unreactive under the same conditions. However, if an aryl substituent was introduced at the α -position of 4-picoline, the reaction proceeded exclusively in the γ -position and provided, for the first time, the addition product 16a in a reasonable 58% yield.

In conclusion, we have developed an efficient and atomeconomical protocol for the direct α - and γ-addition of 2- and 4-alkyl azaarenes to aldimines. The reaction proceeds through a copper catalyzed direct C-H bond functionalization and provides a set of different heterocyclecontaining amines in good yields.

Acknowledgment. The authors acknowledge financial support by RWTH Aachen University.

Supporting Information Available. Experimental procedures and full characterization $(^1H$ and ^{13}C NMR data and spectra, MS, and IR analyses) for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.